Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Environ Qual ; 45(3): 1046-53, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27136173

RESUMEN

Storms cause a substantial increase in the fecal indicator bacteria (FIB) concentrations in stream water as a result of FIB-laden runoff and the release of FIB from stream sediments. Previous work has emphasized the association between FIB and bed sediments finer than sand. The objectives of this work were to elucidate the effect of various velocities on the entrainment of bed-dwelling coliforms in sand-bed streams and to refine methodologies for quantifying sandy streambeds as sources of FIB. Pump-induced hydrographs were created using a stainless steel nonrecirculating flume. Experiments consisted of simulating four storm hydrographs and collecting water samples upstream and downstream of a sand bed at selected intervals. Bed sediment samples were collected before and after each event. The highest concentrations of total coliform and suspended sediments generally occurred in the downstream samples during the rising limb of the hydrographs as a result of entrainment of coliforms and sand from the bed to the water column. There was a first flush effect in the system, as the upper layer of sand was influenced by a rapidly increasing velocity at ∼0.2 m s. Coliforms downstream of the sand bed increased rapidly as velocity exceeded this threshold but then declined even as velocity and discharge continued to increase. This likely reflects the depletion of coliforms as the more densely populated sediment layer was flushed out. There is evidence that streams with sand beds harbor enough FIB that development of total maximum daily loads (TMDLs) should include consideration of them as a source.


Asunto(s)
Bacterias/aislamiento & purificación , Heces/microbiología , Microbiología del Agua , Sedimentos Geológicos , Ríos , Agua , Movimientos del Agua
2.
J Environ Qual ; 41(2): 604-14, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22370422

RESUMEN

Agricultural runoff carries high nutrient loads to receiving waters, contributing to eutrophication. Managed wetlands can be used in integrated management efforts to intercept nutrients before they enter downstream aquatic systems, but detailed information regarding sorption and desorption of P by wetland sediments during typical inundation cycles is lacking. This study seeks to quantify and elucidate how inundation of wetland sediments affects bioavailability of P and contributions of P to downstream systems. A managed wetland cell in Tunica County, Mississippi was subjected to a simulated agricultural runoff event and was monitored for bioavailable phosphorus (water-extractable P [P], Fe-P, and Al-P) of wetland sediments and water level during the runoff event and for 130 d afterward. Inundation varied longitudinally within the wetland, with data supporting significant temporal relationships between inundation and P desorption. Concentrations of P were significantly higher at the site that exhibited variable hydroperiods (100 m) as compared with sites under consistent inundation. This suggests that sites that are inundated for longer periods of time desorb less P immediately to the environment than sites that have periodic or ephemeral inundation. Concentrations of iron oxalate and NaOH-P were significantly higher at the least inundated site as compared with all other sites (F = 5.43; = 0.001) irrespective of time. These results support the hypothesis that increased hydraulic residence time decreases the bioavailability of P in wetland sediments receiving agricultural runoff. This finding suggests that the restoration of wetlands in the mid-southern United States may be hydrologically managed to improve P retention.


Asunto(s)
Agricultura , Sedimentos Geológicos/química , Fósforo/análisis , Fósforo/metabolismo , Humedales , Disponibilidad Biológica
3.
J Plant Physiol ; 163(6): 619-28, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16545995

RESUMEN

Black willow (Salix nigra) cuttings are used for streambank stabilization where they are subjected to a range of soil moisture conditions including flooding. Flooding has been shown to adversely impact cutting performance, and improved understanding of natural adaptations to flooding might suggest handling and planting techniques to enhance success. However, data assessing the root aeration in adventitious roots that are developed on cuttings of woody species are scant. In addition, it appears that no data are available regarding aeration of the root system under partially flooded conditions. This experiment was designed to examine the effects of continuous flooding (CF) and partial flooding (PF) on aerenchyma formation and radial oxygen loss (ROL) in black willow cuttings. Photosynthetic and growth responses to these conditions were also investigated. Under laboratory condition, replicated potted cuttings were subjected to three treatments: no flooding (control, C), CF, and PF. Water was maintained above the soil surface in CF and at 10 cm depth in PF. Results indicated that after the 28-d treatments, root porosity ranged between 28.6% and 33.0% for the CF and C plants but was greater for the PF plants (39.2% for the drained and 37.2% for the flooded portions). A similar response pattern was found for ROL. In addition, CF treatment led to decreases in final root biomass and root/shoot ratio. Neither CF nor PF had any detectable adverse effects on plant gas exchange or photosystem II functioning. Our results indicated that S. nigra cuttings exhibited avoidance mechanisms in response to flooding, especially the partially flooded condition which is the most common occurrence in riparian systems.


Asunto(s)
Oxígeno/fisiología , Raíces de Plantas/fisiología , Salix/fisiología , Agua/fisiología , Fotosíntesis/fisiología , Porosidad , Salix/crecimiento & desarrollo , Suelo/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...